Rodent and human mast cells produce functionally significant intracellular reactive oxygen species but not nitric oxide.
نویسندگان
چکیده
In immunity, reactive oxygen species (ROS) and nitric oxide (NO) are important antimicrobial agents and regulators of cell signaling and activation pathways. However, the cellular sources of ROS and NO are much debated. Particularly, there is contention over whether mast cells, key secretory cells in allergy and immunity, can generate these chemical species, and if so, whether they are of functional significance. We therefore examined directly by flow cytometry the capacity of mast cells to generate intracellular ROS and NO using the respective cell-permeable fluorescent probes dichlorodihydrofluorescein and diaminofluorescein and evaluated the effects of inhibitors of ROS and NO synthesis on cell degranulation. For each of three mast cell types (rat peritoneal mast cells, mouse bone marrow-derived mast cells, and human blood-derived mast cells), degranulation stimulated by IgE/antigen was accompanied by production of intracellular ROS but not NO. Inhibition of ROS production led to reduced degranulation, indicating a facilitatory role for ROS, whereas NO synthase inhibitors were without effect. Likewise, bacterial lipopolysaccharide and interferon-gamma over a wide range of conditions failed to generate intracellular NO in mast cells, whereas these agents readily induced intracellular NO in macrophages. NO synthase protein, as assessed by Western blotting, was readily induced in macrophages but not mast cells. We conclude that rodent and human mast cells generate intracellular ROS but not NO and that intracellular ROS but not intracellular NO are functionally linked to mast cell degranulation.
منابع مشابه
Effects of Copper Heavy Metal and Interaction With Nitric Oxide on Growth Parameters, Photosynthetic Pigment, Soluble Carbohydrate Content and Antioxidant Enzymes in Portulaca oleracea L. Ferdous Fendereski, Mahlagha Ghorbanli* and Arian Sateei
Copper is one of the heavy metal in plant that causes toxicity at high concentration via producing reactive oxygen species. Nitric oxide can protect cells from oxidative stress produce by reactive oxygen species. Effect of different concentrations of copper (1000, 1500 and 2000 μM) and interaction with nitric oxide (100 and 150 μM) were studied on growth parameters (shoot and root length) and s...
متن کاملP-3: Study of Relationship between Nitric Oxide and DNA Oxidative Marker in Semen of Diabetic Men
Background: The incidence of diabetes mellitus is rapidly increasing in the world. One of the complications of diabetes includes disturbance of the reproductive tract, such as infertility, erectile dysfunction, and endocrine disturbances. Nitric oxide (NO) is a free radical produced by most of cells including the human male and female reproductive tracts. NO has a dual role where low concentrat...
متن کاملMacrophage Microbicidal Mechanisms In Vivo: Reactive Nitrogen versus Oxygen Intermediates in the Killing of Intracellular Visceral Leishmania donovani
To determine the relative contributions of respiratory burst-derived reactive oxygen intermediates (ROI) versus reactive nitrogen intermediates (RNI) to macrophage-mediated intracellular host defense, mice genetically deficient in these mechanisms were challenged with Leishmania donovani, a protozoan that selectively parasitizes visceral tissue macrophages. During the early stage of liver infec...
متن کاملO-15: Different Leukocyte Concentrations in Normal and Abnormal Human Semen and Its Correlation with Sperm Intracellular Reactive Oxygen Species, Lipid Peroxidation and DNA Fragmentation
Background: According to World Health Organization guideline (WHO 2010), seminal leukocyte concentration over 1×106/mL is a threat for sperm quality because of their role in reactive oxygen species (ROS) production, lipid per-oxidation (LPO) and later DNA fragmentation (DF). However, this threshold is equal for all semen samples without attention to their qualities. Therefore this study was set...
متن کاملNitric oxide production and signaling in inflammation.
Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. It possesses cytotoxic properties that are aimed against pathogenic microbes, but it can also have damaging effects on host tissues. NO reacts with soluble guanylate cyclase to form cyclic guanosine monophosphate (cGMP), which mediates many of the effects of NO. NO can also interact with molecular oxygen and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 47 شماره
صفحات -
تاریخ انتشار 2004